
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。
- 中文名 裂项求和
- 外文名 Telescoping sum
- 又称 裂项法
- 裂项法求和 1/[n(n+1)]=(1/n)- [1/(n+1)]
裂项法求和
这是分解与组合思想在数列求和中的具体应用.。
(1)1/[n(n+1)]=(1/n)× [1/(n+1)]=(1/n)-[1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2味少干以渐界率沉担丝凯)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
(6)1/[n(n+k)]=1/k[1/n-1/(n+来自k)]
(7)1/[√n+√(n+1)]=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
示例
【例1】【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.
解:an=1/[360百科n(n+1)]=(1/n)- [1/(n+1)](裂项)
则 Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)- [1/(n+1)](裂项求和)
= 1-1/(n+1)
= n/(n+1)
【例2】【整数裂项基本型】求数列an=伟预n(n+1) 的前n项和.
解:an=n(n+指丝投文座怕六氧由1)=[n(n+1)(n+2)-(n-1)n松使费陈客轻员(n+1)]/3(裂项)
则 Sn=[1×2限跑房费特天评景它×3-0×1×2+2×3×4-1×2×3+……+显推处其燃脱斤各n(n+1)(n+2)-(n-1)n(n+1请冲操答铁想细顾实停优)]/3(裂项求和)
= [n(n+1)(n+2)]/3
【例3】1/(1×4)+1/(4×7)+1/(7×10)+……+临慢儿洋用仅右1/(91×94)使用裂项公式将每个分式展开成两个分数。
原式玉派雨反尼思应略维鲜至=1/3 *[(1-1/4)缺置右老节朝听川重缩落+(1/4-1/7)+(1/7-1/10)+……+(1/9副1-1/94)]=1/3*(1-1/94)=31/94
小结
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的田调呀然向片际掌百米落几项。
注意: 余下的项具有如下的特点
呼百格义制 1余下的项前后来自的位置前后是对称的。
2余下的项前后的正负性是相反的。
易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)
附360百科:数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
1、分组法求数列的和:如an=2n+3n
2、错位相减法求和神另利修始未晶杆:如an=n·2^n
3、裂项法求和:如an=1/n(n+1)
4、倒序那说相加法求和:如a阶吸头n= n
5、求数列的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(油座息病属宁况核宗n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)
6、在等差数列 中,有关Sn 的最值问题胶怎建观观远--常用邻项变号法求解:
(1)当 a1>0,d<0时,满足{an盟考七一}的项数m使得Sm取求树抗愿龙读导言型必最大值.
(2)当 a1<0厂执提烧故义与杀位术落,d>0时,满足{an}的项数m使得Sm取最小值.
7、对于1/n+1/(n+1)+1/(n+2)……+1/(n+n)的算式同样适用。