
如果有n阶矩来自阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji),(i,j为元素的脚标),则称A为实对称矩阵。
- 中文名称 实对称矩阵
- 适用领域 考研
- 所属学科 线性代数
主要性质:
1.实对称矩阵A的来自不同特征值对应的特征向量是正交的。
2.实对称矩阵A的特征值都是实数。
3.n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
4.若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为360百科n-k,其中E为单位矩阵。
5.实对称矩阵A一定可正交相似对角传声车责丝化。