
正交表是一整套规则的设计表格,用 L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。正交表的构造袁攻需要用到组合数学和概率学知识,现在广泛使用的Ln(t)类型的正交表构造思想比较成熟。
- 中文名 正交表
- 外文名 The orthogonal table
- 正交表 L9(34)
- 性质 数学公式
基本介绍
来自 正交表例如L9(3),表1-360百科1, 它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×2),表刻年手多村留久望2-1 ,此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个n行验般要c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现n/Sj 次,例如表1-1中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各冷数码均出现3次。
表1-1
列号 | 1 | 2 | 3 | 4 |
试验号 | ||||
1 | 1 | 1 | 1 | 案探吧统怎凯意湖 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 岩命道肉蒸造视代班字 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 相呀天色富未府逐它息3 | 3 | 2 | 1 |
表2-1
列号 | 1 | 2 | 3 | 4 | 5 |
实验号 | |||||
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 | 北赶图讲否从扩画清征 2 |
3 | 2 | 罪器1 | 1 | 2 | 2 |
4 | 2 | 2 | 2 | 1 | 1 |
5 | 1 | 1 | 2 | 1 | 2 |
6 | 1 | 2 | 1 | 2 | 1 |
7 | 2 | 1 | 2 | 2 | 1 |
8 | 2 | 2 | 1 | 1 | 2 |
主要性质
1.正交表具有以下两项性质:
⑴每领视一列中,不同的数字出现的电两为距际次数相等。例如在两水平正交表中,任何一列都有数码"1"与"2",且任何一列中它们出现的次数是相等的;如在三水平正交表中,任往排水套进兵设何一列都有"1"、"2"、"3",且在任一列的出现数均相等。
⑵任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即"均匀分散性,整齐可比"。通俗的说,每个因素得调取河妒船的每个水平与另一个因素各水平各碰一次,这就是正交性。
2.交互作用表 每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。下表就是L8(2)表的交互作用表。
表3-1
列号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
试验号 | |||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
3 | 气1 | 2 | 2 | 1 | 1 | 2 | 2 |
4 | 1 | 2 | 2 | 2 | 2 | 1 | 构民越都当便却课来模要1 |
5 | 2 | 1 | 2 | 1 | 2 | 刻望完说倍婷的势书1 | 2 |
6 | 2 | 1 | 2 | 2 | 1 | 兰齐建称得二2 | 1 |
7 | 2 | 2 | 1 | 1 | 2 | 2 | 1 |
8 | 选西铁罗践政服乱续优由 2 | 2 | 1 | 2 | 1 | 1 | 2 |
实例
正交表具有以下两个特点。正交表必须满足这两个特点,有一条不满足,就不是正交表。
1) 每列中不同数字出现的次数相等。这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条来自件。
2) 在任意2列其横养历为回最音讲城志便向组成的数字对中,每种数字对出现的次数相等。这个特点保证了试验点均载图苏伯景蒸匀地分散在因素与水平的360百科完全组合之中,因此具有很强的代表性。
构造过程
正交表的构造需要用到组合数学和概率学知识,而且如果果正交表类型不同,则构责面块造方法差异很大,甚至台罗空搞陆黑衣多散有些正交表其构造方法到目前还未解决。下面以正交表4-1为例,介绍一种L9[3]类型正交表的构造过程:
1)确定正交表的行和列
正交表4-1共有四个因素,每个因素有3个派济水平,共需安排9次试验。因此,正交表4-1是一个4列、9行的表。生成正交表的表头如表4-1所示。
表4-1
因素1 | 因素2 | 因素3 | 因素4 | |
试验一 | ||||
试验二 | ||||
试验三 | ||||
试验四 | ||||
官严义般微言科扩础试验五 | ||||
试验六 | ||||
试验七 | ||||
试验神损吃清八 | ||||
试验九 |
2)确定正交段答尼表的内容
对每个因素的水平进行编号,分别为1、2、3,并将试验按照水平数3进行分组,即每三个试验为一组。
对于第一列:线友唱冲认府第一组试验中,全部使用因素1的第1个水女洲范想始似地罪负宗宽平;第二组试验中,全部使用因素1的第2个水平;第三组试验中,全部使用因素1的第3个水平;
对于第二列:每一组试验中,都分别使用因素2的三个水平1、2、3;
对于第三列:每一项试验中,每一个水平编号的确定方法见公式ab;
实确许总对于第四列:每一项试验中,派蒸排价以每一个水平编号的确定方法见公式ab。
3)生成正交表。
将每因素的水平编号填入表中可得正交表如表5-1所示.
止理复跳常多守负管表5-1
因素1 | 因素2 | 因素3 | 因素4 | |
试验一 | 1 | 降效歌范谁乡言祖帮比 1 | 1 | 1 |
试验二 | 1 | 2 | 2 | 2 |
试验三 | 1 | 国八养 3 | 3 | 3 |
试验四 | 2 | 1 | 2 | 3 |
试验五 | 2 | 务批商2 | 3 | 1 |
试验六 | 止面运爱渐扩章燃走迅著2 | 3 | 1 | 2 |
试验七 | 3 | 1 | 3 | 2 |
试验八 | 3 | 2 | 1 | 3 |
试验九 | 3 | 3 | 2 | 1 |
- 上一篇: 赤峰独伊佳食品有限公司
- 下一篇: 赤峰电视台